Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
نویسندگان
چکیده مقاله:
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number of XORs. Firstly, we mathematically characterize the MDS property of a class of matrices (derived from the product of binary matrices and companion matrices of $sigma$-LFSRs aka recursive diffusion layers) whose implementation cost is $10m+4$ XORs for 4 <= m <= 8, where $m$ is the bit length of inputs. Then, based on the mathematical investigation, we further extend the search space and propose new families of 4x 4 MDS matrices with 8m+4 and 8m+3 XOR implementation cost. The lightest MDS matrices by our new approach have the same implementation cost as the lightest existent matrix.
منابع مشابه
Lightweight MDS Involution Matrices
In this article, we provide new methods to look for lightweight MDS matrices, and in particular involutory ones. By proving many new properties and equivalence classes for various MDS matrices constructions such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we exhibit new search algorithms that greatly reduce the search space and make lightweight MDS matrices of rather high dimension poss...
متن کاملLightweight MDS Generalized Circulant Matrices
In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...
متن کاملDynamic MDS Matrices for Substantial Cryptographic Strength
Ciphers get their strength from the mathematical functions of confusion and diffusion, also known as substitution and permutation. These were the basics of classical cryptography and they are still the basic part of modern ciphers. In block ciphers diffusion is achieved by the use of Maximum Distance Separable (MDS) matrices. In this paper we present some methods for constructing dynamic (and r...
متن کاملLightweight MDS Generalized Circulant Matrices (Full Version)
In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...
متن کاملsLiSCP: Simeck-Based Permutations for Lightweight Sponge Cryptographic Primitives
In this paper, we propose a family of lightweight cryptographic permutations called sLiSCP, with the sole aim to provide a realistic minimal design that suits a variety of lightweight device applications. More precisely, we argue that for such devices the chip area dedicated for security purposes should, not only be consumed by an encryption or hashing algorithm, but also provide as many crypto...
متن کاملPerfect Diffusion Primitives for Block Ciphers -- Building Efficient MDS Matrices
Although linear perfect diffusion primitives, i.e. MDS matrices, are widely used in block ciphers, e.g. AES, very little systematic work has been done on how to find “efficient” ones. In this paper we attempt to do so by considering software implementations on various platforms. These considerations lead to interesting combinatorial problems: how to maximize the number of occurrences of 1 in th...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 1
صفحات 35- 46
تاریخ انتشار 2019-01-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023